On Deriving Relaxation Equations for Nuclear Spins
Author:
Apel W.,Bychkov Yu. A.
Publisher
Springer Netherlands
Reference20 articles.
1. Wangsness, R.K. and Bloch, F. (1953) The Dynamical Theory of Nuclear Induction, Phys. Rev.
89, 728–739. 2. Slichter, C.P. (1990) Principles of Magnetic Resonance, Springer Series in Solid-State Sciences, Vol. 1. Springer-Verlag, Berlin Heidelberg New York. 3. Girvin, S.M. (1999) The Quantum Hall Effect: Novel Excitations and Broken Symmetries, In A. Comtet, T. Jolicoeur, S. Ouvry, and F. David, editors, Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems, Les Houches — Ecole d’Ete de Physique Theorique, Session LXIX, chapter 2, pages 53-176. Springer-Verlag, Berlin/Heidelberg Germany. Lectures delivered at Ecole d’Ete Les Houches, July 1998; also in cond-mat/9907002. 4. Dobers, M., von Klitzing, K., Schneider, J., Weimann, G., and Ploog, K. (1988) Electrical Detection of Nuclear Magnetic Resonance in GaAs-AlxGa1_x As Heterostructures, Phys. Rev. Lett.
61, 1650–1653. 5. Berg, A., Dobers, M., Gerhardts, R.R., and von Klitzing, K. (1990) Magnetoquantum Oscillations of the Nuclear-Spin-Lattice Relaxation near a Two-Dimensional Electron Gas, Phys. Rev. Lett.
64, 2563–2566.
|
|