1. N.G. de Bruijn. The mathematical vernacular, a language for mathematics and typed sets, in Nederpelt et al. [1994], North-Holland, Elsevier, pp. 865–936. 1994.
2. R.L. Constable. Using reflection to explain and enhance type theory, in: H. Schwichtenberg (ed.), Proof and Computation, Computer and System Sciences 139, Springer, pp. 109–144. 1995.
3. F. Kamareddine and R. Nederpelt. A refinement of de Bruijn’s formal language of mathematics, Journal of Logic, Language and Information,to appear.
4. R. Nederpelt. Weak Type Theory: a formal language for mathematics, Technical Report 02–05,Dept. of Mathematics and Computer Science, Eindhoven University of Technology, Box 513, 5600 MB Eindhoven, The Netherlands. 2002. URL:
vubisveb.tue.nl/N/scripts/mgvms32.d11?TS=Sk
.
5. Nederpelt, R. P., J. H. Geuvers and R. de Vrijer (eds.) Selected papers on Automath, North-Holland Publishing Co., Amsterdam. 1994.