Controlling the Velocity of Brownian Motion by its Terminal Value
Publisher
Springer Netherlands
Reference13 articles.
1. Doob, J. L. (1942). The Brownian movement and stochastic equations. Ann. of Math. 43 (351–369).
2. Dubins, L. E. Shepp, L. A. and Shiryaev, A. N. (1993). Optimal stopping rules and maximal inequalities for Bessel processes. Theory Probab. Appl. 38 (226–261).
3. Graversen, S. E. and Peskir, G. (1995). On Doob’s maximal inequality for Brownian motion. Research Report No. 337, Dept. Theoret. Statist. Aarhus (13 pp). Stochastic Process. Appl. 69, 1997 (111–125).
4. Graversen, S. E. and Peskir, G. (1996). Optimal stopping in the L log L-inequality of Hardy and Littlewood. Research Report No. 360, Dept. Theoret. Statist. Aarhus (12 pp). Bull. London Math. Soc. 30, 1998 (171–181).
5. Graversen, S. E. and Peskir, G. (1998). Maximal inequalities for the Ornstein-Uhlenbeck process. Research Report No. 393, Dept. Theoret. Statist. Aarhus (8 pp).