Solved and Unsolved Problems on Pseudoprime Numbers and Their Generalizations
Author:
Rotkiewicz Andrzej
Publisher
Springer Netherlands
Reference50 articles.
1. Alford, W.R., Granville, A. and Pomerance C. “There are infinitely many Carmichael numbers.” Ann. of Math., Vol. 140 (1994): pp. 703–722.
2. Baillie R. and Wagstaff Samuel S. “Lucas pseudoprimes.” Math. Comp., Vol. 35 (1980): pp. 1391–1417.
3. Benkoski, S.J. Review of On the congruence $${{{\text{2}}}^{{n - k}}} \equiv \left( {\bmod n} \right). $$ . MR87e: 11005.
4. Cipolla, M. “Sui numeri composti P che verificaro la congruenza di Fermat $${{a}^{{P - 1}}} \equiv 1\left( {\bmod P} \right). $$ .” Annali di Matematica (3), Vol. 9 (1904): pp. 139–160.
5. Conway, J.H., Guy, R.K., Schneeberger, W.A. and Sloane, N.J.A. “The primary pretenders.” Acta Arith., Vol. 78 (1997): pp. 307–313.