1. S. Acid and L. M. de Campos. Approximations of causal networks by polytrees: An empirical study. In Advances in Intelligent Computing, B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds. pp. 149–158. Lecture Notes in Computer Science 945, Springer Verlag, Berlin, 1995.
2. S. Acid and L. M. de Campos. An algorithm for finding minimum d-separating sets in belief networks. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, E. Horvitz and F. Jensen, eds. pp. 3–10. Morgan Kaufmann, San Mateo, 1996 ).
3. S. Acid and L. M. de Campos. BENEDICT: An algorithm for learning probabilistic belief networks. In Proceedings of the Sixth International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), pp. 979–984, 1996.
4. Acid and de Campos, 1997] S. Acid and L. M. de Campos. Algoritmos hibridos para el aprendizaje de redes de creencia. In Proceedings of the VII Conferencia de la Asociacibn Espanola para la Inteligencia Artificial,pp. 499–508, 1997. In Spanish.
5. Acid et al.,19911 S. Acid, L. M. de Campos, A. Gonzalez, R. Molina and N. Pérez de la Blanca. CASTLE: A tool for bayesian learning. In Proceeding of the ESPRIT’9I Conference,pp. 363–377. Commission of the European Communities, 1991.