CPU and GPU real-time filtering methods for dense surface metrology using general matrix to matrix multiplications

Author:

Usamentiaga R.ORCID

Abstract

AbstractFiltering is a required task in surface metrology for the identification of the components relevant for automated quality control. The calculation of real-time features about the surface is crucial to determining the mechanical and physical properties of the inspected product. The computation efficiency of the filtering operations is a major challenge in surface metrology, as current sensors provide massive volumes of data at very high acquisition rates. To overcome the challenges, this work presents different real-time filtering solutions comparing the performance on the CPU and on the GPU, using modern hardware. The proposed framework is focused on filtering techniques that can be expressed using a finite impulse response (FIR) kernel that includes the Gaussian kernel, the most common filtering technique recommended by ISO and ASME standards. This research work proposes variations of the double FIFO and double circular filters. The filters are transformed into a series of general matrix to matrix multiplications, which can be run extremely efficiently on different architectures. The proposed filtering approach provides superior performance compared with previous works. Additionally, tests are carried out to quantify the performance of the GPU in terms of data transfer and computation capabilities in order to diminish the penalty imposed by data transfer from main memory to the GPU in real-time operations. Based on the results, an efficient batch filtering technique is proposed that can be run on the GPU faster than the CPU even for small profile and kernel sizes, offloading this task from the host CPU for optimal system and application response.

Funder

Universidad de Oviedo

Publisher

Springer Science and Business Media LLC

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3