Author:
Kim Chae-Lin,Kim Byung-Gyu
Abstract
AbstractFacial expression recognition (FER) is utilized in various fields that analyze facial expressions. FER is attracting increasing attention for its role in improving the convenience in human life. It is widely applied in human–computer interaction tasks. However, recently, FER tasks have encountered certain data and training issues. To address these issues in FER, few-shot learning (FSL) has been researched as a new approach. In this paper, we focus on analyzing FER techniques based on FSL and consider the computational complexity and processing time in these models. FSL has been researched as it can solve the problems of training with few datasets and generalizing in a wild-environmental condition. Based on our analysis, we describe certain existing challenges in the use of FSL in FER systems and suggest research directions to resolve these issues. FER using FSL can be time efficient and reduce the complexity in many other real-time processing tasks and is an important area for further research.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献