Few-shot learning for facial expression recognition: a comprehensive survey

Author:

Kim Chae-Lin,Kim Byung-Gyu

Abstract

AbstractFacial expression recognition (FER) is utilized in various fields that analyze facial expressions. FER is attracting increasing attention for its role in improving the convenience in human life. It is widely applied in human–computer interaction tasks. However, recently, FER tasks have encountered certain data and training issues. To address these issues in FER, few-shot learning (FSL) has been researched as a new approach. In this paper, we focus on analyzing FER techniques based on FSL and consider the computational complexity and processing time in these models. FSL has been researched as it can solve the problems of training with few datasets and generalizing in a wild-environmental condition. Based on our analysis, we describe certain existing challenges in the use of FSL in FER systems and suggest research directions to resolve these issues. FER using FSL can be time efficient and reduce the complexity in many other real-time processing tasks and is an important area for further research.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AM YOLO: adaptive multi-scale YOLO for ship instance segmentation;Journal of Real-Time Image Processing;2024-05-28

2. Driver’s facial expression recognition: A comprehensive survey;Expert Systems with Applications;2024-05

3. Learning optimal inter-class margin adaptively for few-shot class-incremental learning via neural collapse-based meta-learning;Information Processing & Management;2024-05

4. Twin attention based multi-task convolutional bidirectional long short term memory for facial expression recognition;Multimedia Tools and Applications;2024-04-27

5. Facial Emotion Recognition Through Quantum Machine learning;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3