Software and hardware realizations for different designs of chaos-based secret image sharing systems

Author:

Sharobim Bishoy K.ORCID,Hosam MuhammadORCID,Abd-El-Hafiz Salwa K.ORCID,Sayed Wafaa S.ORCID,Said Lobna A.ORCID,Radwan Ahmed G.ORCID

Abstract

AbstractSecret image sharing (SIS) conveys a secret image to mutually suspicious receivers by sending meaningless shares to the participants, and all shares must be present to recover the secret. This paper proposes and compares three systems for secret sharing, where a visual cryptography system is designed with a fast recovery scheme as the backbone for all systems. Then, an SIS system is introduced for sharing any type of image, where it improves security using the Lorenz chaotic system as the source of randomness and the generalized Arnold transform as a permutation module. The second SIS system further enhances security and robustness by utilizing SHA-256 and RSA cryptosystem. The presented architectures are implemented on a field programmable gate array (FPGA) to enhance computational efficiency and facilitate real-time processing. Detailed experimental results and comparisons between the software and hardware realizations are presented. Security analysis and comparisons with related literature are also introduced with good results, including statistical tests, differential attack measures, robustness tests against noise and crop attacks, key sensitivity tests, and performance analysis.

Funder

Science and Technology Development Fund

Nile University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3