Abstract
AbstractSecret image sharing (SIS) conveys a secret image to mutually suspicious receivers by sending meaningless shares to the participants, and all shares must be present to recover the secret. This paper proposes and compares three systems for secret sharing, where a visual cryptography system is designed with a fast recovery scheme as the backbone for all systems. Then, an SIS system is introduced for sharing any type of image, where it improves security using the Lorenz chaotic system as the source of randomness and the generalized Arnold transform as a permutation module. The second SIS system further enhances security and robustness by utilizing SHA-256 and RSA cryptosystem. The presented architectures are implemented on a field programmable gate array (FPGA) to enhance computational efficiency and facilitate real-time processing. Detailed experimental results and comparisons between the software and hardware realizations are presented. Security analysis and comparisons with related literature are also introduced with good results, including statistical tests, differential attack measures, robustness tests against noise and crop attacks, key sensitivity tests, and performance analysis.
Funder
Science and Technology Development Fund
Nile University
Publisher
Springer Science and Business Media LLC