Author:
Li Yue,Huang Jun,Wang Chaofeng,Huang Hongyue
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Cao, C., Preda, M., Zaharia, T.: 3D point cloud compression: a survey. In: The 24th International Conference on 3D Web Technology, pp. 1–9 (2019)
2. Park, J., Kim, C., Kim, S., Jo, K.: Pcscnet: Fast 3D semantic segmentation of lidar point cloud for autonomous car using point convolution and sparse convolution network. Expert Syst. Appl. 212, 118815 (2023)
3. Eon, E., Harrison, B., Myers, T., Chou, P.: 8i voxelized full bodies, version 2–a voxelized point cloud dataset, ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m40059 M 74006 (2017)
4. Jang, E.S., Preda, M., Mammou, K., Tourapis, A.M., Kim, J., Graziosi, D.B., Rhyu, S., Budagavi, M.: Video-based point-cloud-compression standard in mpeg: from evidence collection to committee draft [standards in a nutshell]. IEEE Signal Process. Mag. 36(3), 118–123 (2019)
5. Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P.A., Cohen, R.A., Krivokuća, M., Lasserre, S., Li, Z., et al.: Emerging mpeg standards for point cloud compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 9(1), 133–148 (2018)