Symptom clusters and their influence on prognosis using EORTC QLQ-C15-PAL scores in terminally ill patients with cancer

Author:

Koyama Nanako,Matsumura Chikako,Tahara Yuuna,Sako Morito,Kurosawa Hideo,Nomura Takehisa,Eguchi Yuki,Ohba Kazuki,Yano Yoshitaka

Abstract

Abstract Purpose The aims of the present study were to investigate the symptom clusters in terminally ill patients with cancer using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 15 Palliative Care (EORTC QLQ-C15-PAL), and to examine whether these symptom clusters influenced prognosis. Methods We analyzed data from 130 cancer patients hospitalized in the palliative care unit from June 2018 to December 2019 in an observational study. Principal component analysis was used to detect symptom clusters using the scored date of 14 items in the QLQ-C15-PAL, except for overall QOL, at the time of hospitalization. The influence of the existence of these symptom clusters and Palliative Performance Scale (PPS) on survival was analyzed by Cox proportional hazards regression analysis, and survival curves were compared between the groups with or without existing corresponding symptom clusters using the log-rank test. Results The following symptom clusters were identified: cluster 1 (pain, insomnia, emotional functioning), cluster 2 (dyspnea, appetite loss, fatigue, and nausea), and cluster 3 (physical functioning). Cronbach’s alpha values for the symptom clusters ranged from 0.72 to 0.82. An increased risk of death was significantly associated with the existence of cluster 2 and poor PPS (log-rank test, p = 0.016 and p < 0.001, respectively). Conclusion In terminally ill patients with cancer, three symptom clusters were detected based on QLQ-C15-PAL scores. Poor PPS and the presence of symptom cluster that includes dyspnea, appetite loss, fatigue, and nausea indicated poor prognosis.

Funder

KAKENHI Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3