Lutein and β-Carotene Characterization in Free and Nanodispersion Forms in Terms of Antioxidant Activity and Cytotoxicity

Author:

Elkholy Nourhan S.ORCID,Hariri Mohamad Louai M.ORCID,Mohammed Haitham S.,Shafaa Medhat W.ORCID

Abstract

Abstract Purpose Carotenoids are potent natural antioxidants with many important applications. Their nanodispersion formulations can solve problems that may limit their usage. In this study, we produced carotenoid nanodispersions from extracted lutein (nano-Lut), extracted β-carotene (nano-EBc), and synthetic β-carotene (nano-SBC). Methods The present study has quantitatively emphasized the physicochemical, antioxidant, and cytotoxic properties of free and nanodispersed formulations of lutein and β-carotene. The nanodispersions were characterized by spectral absorption, dynamic light scattering, and zeta potential. Antioxidant and cytotoxicity assays were conducted for free and their nanodispersed forms. The cytotoxicity of free carotenoids and their nanodispersions was conducted on HSF, VERO, and BNL cell lines. Results Nano-Lut has the smallest mean particle size (185.2 ± 40.5 nm, PDI of 0.183 ± 0.01, and zeta potential of −28.6 ± 6.4 mV). Nano-SBc showed monomodal size distribution (220.5 ± 30.09 nm, PDI of 0.318 ± 0.03, and zeta potential of −12.1 ± 5.9 mV), while nano-EBc showed a bimodal size distribution (with a mean particle size of 498.3 ± 88.9 nm, PDI of 0.65 ± 0.08, and zeta potential of −39.7 ± 1.3 mV). All prepared nanodispersions showed less than 20% loss during the formulation process. Antioxidant assays showed that extracted lutein was the most active and synthetic β-carotene was the least. Cells showed higher tolerance for lutein and its nanodispersion than extracted or synthetic β-carotene either in free or nanodispersion forms. Conclusions The study proved that lutein in nanodispersed form possesses the smallest size, the highest antioxidant activity, and the lowest cytotoxicity among the tested formulations.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3