An Eco-Friendly and Hopeful Promise Platform for Delivering Hydrophilic Wound Healing Agents in Topical Administration for Wound Disorder: Diltiazem-Loaded Niosomes

Author:

Akbari Jafar,Saeedi Majid,Morteza-Semnani Katayoun,Ghasemi Maryam,Eshaghi Malihe,Eghbali Mohammad,Jafarkhani Behrouz,Rahimnia Seyyed Mobin,Negarandeh Reza,Babaei Amirhossein,Hashemi Seyyed Mohammad Hassan,Asare-Addo Kofi,Nokhodchi AliORCID

Abstract

Abstract Purposes Calcium channel blockers, such as diltiazem (DLZ), are important drugs for wound repair treatment. This current study used an ultrasonic method to increase the cutaneous delivery of (DLZ) niosomes. Methods The impact of the cholesterol:surfactant ratio on the DLZ-loaded niosome formulations was investigated. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, drug release, skin sensitivity, animal wound repair model, and histopathological assessment were applied to investigate the characteristics, morphology, and therapeutic effectiveness of the DLZ noisome. Results The results showed that changes in the cholesterol:surfactant ratio can influence the zeta potential and the size of the niosome. The maximum entrapment efficiency was observed to be about 94% when the cholesterol content in the formulation was high. The DLZ release studies revealed that the niosomal formulation was released slowly over the course of 24 h. Macroscopic observations of the wound demonstrated that wound closure in the DLZ-niosome-treated group and the commercial brand was equal and higher than in the other groups (gel base, placebo gel, and negative control). Pathological studies described that the wound repair in the DLZ-niosomal gel group was greater than in the other treatment. All the preparations tested for cutaneous irritation on Wistar rats showed the DLZ niosomal gels to be non-irritating. Conclusion The findings of this study revealed that the prepared DLZ-niosome could be used as a possible nano-vesicle for DLZ cutaneous delivery thus potentially opening up new prospects for the treatment of wound disorders.

Funder

Mazandaran University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3