Residence Time Distribution-Based Smith Predictor: an Advanced Feedback Control for Dead Time–Dominated Continuous Powder Blending Process

Author:

Gyürkés Martin,Tacsi Kornélia,Pataki Hajnalka,Farkas AttilaORCID

Abstract

Abstract Purpose In continuous manufacturing (CM), the material traceability and process dynamics can be investigated by residence time distribution (RTD). Many of the unit operations used in the pharma industry were characterized by dead time–dominated RTD. Even though feasible and proper feedback control is one of the many advantages of CM, its application is challenging in these cases. This study aims to develop a feedback control, implementing the RTD in a Smith predictor control structure in a continuous powder blender line. Methods Continuous powder blending was investigated with near-infrared spectroscopy (NIR), and the blending was controlled through a volumetric feeder. A MATLAB GUI was developed to calculate and control the concentration of the API based on the chemometric evaluation of the spectra. The programmed GUI changed the feeding rate based on the proportional integral derivative (PID) and the Smith predictor, which implemented the RTD of the system. The control structures were compared even on a system with amplified dead time. Results In this work, the control structure of the Smith control was devised by utilizing the RTD of the system. The Smith control was compared to a classic PI control structure on the normal system and on an increased dead time system. The Smith predictor was able to reduce the response time for various disturbances by up to 50%, and the dead time had a lower effect on the control. Conclusions Implementing the RTD models in the control structure improved the process design and further expanded the wide range of applications of the RTD models. Both control structures were able to reduce the effect of disturbances on the system; however, the Smith predictor presented more reliable and faster control, with a wider space for control tuning.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Nemzeti Kutatási és Technológiai Hivatal

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3