Abstract
AbstractThis study investigates consequences of the steady flow of nanofluid via contracting cylinder utilizing the mathematical Buongiorno's model of nanofluid. Herein, the influence of magnetic field and porous materials are discussed in this paper. The parameters of heat sink/source and radiation are taken into respect. Furthermore, the react of chemical and the yield stress within the nanoingredients too, take up a new niche in this research. The transformations of similarity facilitate the paradigm of partial differential equations into ordinary differential equations. To hit the solutions of the nonlinear equations, the spectral local linearization method has been utilized. Consequences are discussed with diagrams and discussions. The physical consignments as a local Sherwood number, local Nusselt number and drag force are displayed. Excellent advancement in transmit of mass and heat is spotted, which can be conceived through graphs. Results elucidate that the transport of heat increased by increasing the porous medium permeability, thermal radiation, chemical reaction and magnetic field, but raising the heat sink/source and yield stress reduce the heat transfer, whereas the adverse behavior is noticed with the transmit of mass for these parameters.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献