Effects of yield stress and chemical reaction on magnetic two-phase nanofluid flow in a porous regime with thermal ray

Author:

Abdelhafez M. A.,Awad Amal A.,Nafe Mohamed A.ORCID,Eisa Dalia A.

Abstract

AbstractThis study investigates consequences of the steady flow of nanofluid via contracting cylinder utilizing the mathematical Buongiorno's model of nanofluid. Herein, the influence of magnetic field and porous materials are discussed in this paper. The parameters of heat sink/source and radiation are taken into respect. Furthermore, the react of chemical and the yield stress within the nanoingredients too, take up a new niche in this research. The transformations of similarity facilitate the paradigm of partial differential equations into ordinary differential equations. To hit the solutions of the nonlinear equations, the spectral local linearization method has been utilized. Consequences are discussed with diagrams and discussions. The physical consignments as a local Sherwood number, local Nusselt number and drag force are displayed. Excellent advancement in transmit of mass and heat is spotted, which can be conceived through graphs. Results elucidate that the transport of heat increased by increasing the porous medium permeability, thermal radiation, chemical reaction and magnetic field, but raising the heat sink/source and yield stress reduce the heat transfer, whereas the adverse behavior is noticed with the transmit of mass for these parameters.

Funder

New Valley University

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3