Abstract
AbstractThis paper presents an entropy-based consensus algorithm for a swarm of artificial agents with limited sensing, communication, and processing capabilities. Each agent is modeled as a probabilistic finite state machine with a preference for a finite number of options defined as a probability distribution. The most preferred option, called exhibited decision, determines the agent’s state. The state transition is governed by internally updating this preference based on the states of neighboring agents and their entropy-based levels of certainty. Swarm agents continuously update their preferences by exchanging the exhibited decisions and the certainty values among the locally connected neighbors, leading to consensus towards an agreed-upon decision. The presented method is evaluated for its scalability over the swarm size and the number of options and its reliability under different conditions. Adopting classical best-of-N target selection scenarios, the algorithm is compared with three existing methods, the majority rule, frequency-based method, and k-unanimity method. The evaluation results show that the entropy-based method is reliable and efficient in these consensus problems.
Funder
Defense Advanced Research Projects Agency
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Amorim, T., Nascimento, T., Petracek, P., De Masi, G., Ferrante, E., & Saska, M. (2021). Self-organized UAV flocking based on proximal control. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1374-1382). IEEE.
2. Anand, H., Rees, S. A., Jose, A., Bearman, S., Chen, Z., Antervedi, P., & Das, J. (2019). The OpenUAV Swarm Simulation Testbed: a Collaborative Design Studio for Field Robotics. arXiv preprint arXiv:1910.00739.
3. Arvin, F., Turgut, A. E., & Yue, S. (2012). Fuzzy-based aggregation with a mobile robot swarm. In Swarm Intelligence: 8th International Conference, ANTS 2012, Brussels, Belgium, September 12–14. (2012). Proceedings 8 (pp. 346–347). Berlin Heidelberg: Springer.
4. Bartashevich, P., & Mostaghim, S. (2021). Multi-featured collective perception with evidence theory: Tackling spatial correlations. Swarm Intelligence, 15(1), 83–110.
5. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., & Crailsheim, K. (2012). Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Mathematical and Computer Modelling of Dynamical Systems, 18(1), 87–100.