Non-uniform magnetic fields for collective behavior of self-assembled magnetic pillars

Author:

Huaroto Juan J.,Piñan Basualdo Franco N.,Roos Ariëns Dionne Lisa,Misra Sarthak

Abstract

AbstractProgrammable and self-assembled magnetic pillars are essential to expanding the application domain of magnetic microparticle collectives. Typically, the collective behavior of self-assembled magnetic pillars is carried out by generating uniform and time-varying magnetic fields. However, magnetic field-shaping capabilities employing non-uniform fields have not been explored for magnetic pillars. In this study, we generate non-uniform magnetic fields using a nine-coil electromagnetic system to achieve object manipulation, upstream/downstream locomotion, and independent actuation. We begin analyzing the static magnetic self-assembly of reduced iron microparticles and experimentally derive the average dimensions (height and diameter) of the resulting pillars. Subsequently, we delve into the collective dynamic response under non-uniform and time-varying magnetic fields, unveiling four distinct modalities. In order to demonstrate the versatility of our approach, we extend our study to the two-dimensional manipulation of a millimeter-sized glass bead using a precessing magnetic field describing a Lissajous curve. Moreover, we showcase the ability of magnetic pillars to adapt to confined and dynamic conditions within fluidic tubes. We finally present a noteworthy case where the nine-coil electromagnetic system independently actuates two clusters of magnetic pillars. Our study shows the potential of using non-uniform magnetic fields to actuate self-assembled magnetic pillars, enabling morphology reconfiguration capabilities, object manipulation, locomotion, and independent actuation.

Funder

HORIZON EUROPE European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3