Emergent communication enhances foraging behavior in evolved swarms controlled by spiking neural networks

Author:

Jimenez Romero Cristian,Yegenoglu Alper,Pérez Martín Aarón,Diaz-Pier Sandra,Morrison Abigail

Abstract

AbstractSocial insects such as ants and termites communicate via pheromones which allow them to coordinate their activity and solve complex tasks as a swarm, e.g. foraging for food or finding their way back to the nest. This behavior was shaped through evolutionary processes over millions of years. In computational models, self-coordination in swarms has been implemented using probabilistic or pre-defined simple action rules to shape the decision of each agent and the collective behavior. However, manual tuned decision rules may limit the emergent behavior of the swarm. In this work we investigate the emergence of self-coordination and communication in evolved swarms without defining any explicit rule. For this purpose, we evolve a swarm of agents representing an ant colony. We use an evolutionary algorithm to optimize a spiking neural network (SNN) which serves as an artificial brain to control the behavior of each agent. The goal of the evolved colony is to find optimal ways to forage for food and return it to the nest in the shortest amount of time. In the evolutionary phase, the ants are able to learn to collaborate by depositing pheromone near food piles and near the nest to guide other ants. The pheromone usage is not manually encoded into the network; instead, this behavior is established through the optimization procedure. We observe that pheromone-based communication enables the ants to perform better in comparison to colonies where communication via pheromone did not emerge. Furthermore, we assess the foraging performance of the ant colonies by comparing the SNN-based model to a multi-agent rule-based system. Our results show that the SNN-based model can efficiently complete the foraging task in a short amount of time. Our approach illustrates that even in the absence of pre-defined rules, self-coordination via pheromone emerges as a result of the network optimization. This work serves as a proof of concept for the possibility of creating complex applications utilizing SNNs as underlying architectures for multi-agent interactions where communication and self-coordination is desired.

Funder

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3