Author:
Eschwege Daniel von,Engelbrecht Andries
Abstract
AbstractParticle swarm optimization (PSO) performance is sensitive to the control parameter values used, but tuning of control parameters for the problem at hand is computationally expensive. Self-adaptive particle swarm optimization (SAPSO) algorithms attempt to adjust control parameters during the optimization process, ideally without introducing additional control parameters to which the performance is sensitive. This paper proposes a belief space (BS) approach, borrowed from cultural algorithms (CAs), towards development of a SAPSO. The resulting BS-SAPSO utilizes a belief space to direct the search for optimal control parameter values by excluding non-promising configurations from the control parameter space. The resulting BS-SAPSO achieves an improvement in performance of 3–55% above the various baselines, based on the solution quality of the objective function values achieved on the functions tested.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Tuning pso parameters through sensitivity analysis (Technical Report Interner Bericht des Sonderforschungsbereichs (SFB) 531 Computational Intelligence No. CI-124/02, Universita̋tsbibliothek Dortmund).
2. Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176(8), 937–971.
3. Bonyadi, M. R., & Michalewicz, Z. (2016). Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 21(3), 378–390.
4. Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm optimization. In Proceedings of the IEEE swarm intelligence symposium (pp. 120–127). IEEE.
5. Cenikj, G., Lang, R. D., Engelbrecht, A. P., Doerr, C., Korošec, P., & Eftimov, T. (2022). Selector: selecting a representative benchmark suite for reproducible statistical comparison. In Proceedings of the genetic and evolutionary computation conference. GECCO ’22 (pp. 620–629). Association for Computing Machinery. https://doi.org/10.1145/3512290.3528809
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献