Belief space-guided approach to self-adaptive particle swarm optimization

Author:

Eschwege Daniel von,Engelbrecht Andries

Abstract

AbstractParticle swarm optimization (PSO) performance is sensitive to the control parameter values used, but tuning of control parameters for the problem at hand is computationally expensive. Self-adaptive particle swarm optimization (SAPSO) algorithms attempt to adjust control parameters during the optimization process, ideally without introducing additional control parameters to which the performance is sensitive. This paper proposes a belief space (BS) approach, borrowed from cultural algorithms (CAs), towards development of a SAPSO. The resulting BS-SAPSO utilizes a belief space to direct the search for optimal control parameter values by excluding non-promising configurations from the control parameter space. The resulting BS-SAPSO achieves an improvement in performance of 3–55% above the various baselines, based on the solution quality of the objective function values achieved on the functions tested.

Funder

Stellenbosch University

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Tuning pso parameters through sensitivity analysis (Technical Report Interner Bericht des Sonderforschungsbereichs (SFB) 531 Computational Intelligence No. CI-124/02, Universita̋tsbibliothek Dortmund).

2. Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176(8), 937–971.

3. Bonyadi, M. R., & Michalewicz, Z. (2016). Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 21(3), 378–390.

4. Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm optimization. In Proceedings of the IEEE swarm intelligence symposium (pp. 120–127). IEEE.

5. Cenikj, G., Lang, R. D., Engelbrecht, A. P., Doerr, C., Korošec, P., & Eftimov, T. (2022). Selector: selecting a representative benchmark suite for reproducible statistical comparison. In Proceedings of the genetic and evolutionary computation conference. GECCO ’22 (pp. 620–629). Association for Computing Machinery. https://doi.org/10.1145/3512290.3528809

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3