1. Adra, S. F. (2007). Improving convergence, diversity and pertinency in multiobjective optimisation. Ph.D. Thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK.
2. Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the surprising behavior of distance metrics in high dimensional space. In International Conference on Database Theory (pp. 420–434). Springer.
3. Bader, J., Deb, K., & Zitzler, E. (2010). Faster hypervolume-based search using Monte Carlo sampling. In Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems.
Lecture Notes in Economics and Mathematical Systems (Vol. 634, pp. 313–326). Berlin: Springer.
4. Benameur, L., Alami, J., & Imrani, A. E. (2009). A new hybrid particle swarm optimization algorithm for handling multiobjective problem using fuzzy clustering technique. In Proceedings of the 2009 International Conference on Computational Intelligence, Modelling and Simulation, CSSIM ’09 (pp. 48–53). Washington, DC: IEEE Computer Society.
5. Berkhin, P. (2006). A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, & M. Teboulle (Eds.), Grouping multidimensional data: Recent advances in clustering (pp. 25–71). Berlin: Springer.