Negligence Failures and Negligence Fixes. A Comparative Analysis of Criminal Regulation of AI and Autonomous Vehicles

Author:

Giannini AliceORCID,Kwik Jonathan

Abstract

AbstractAutomated vehicles (“AV”) can greatly improve road safety and societal welfare, but legal systems have struggled with the prospect of whom to hold criminally liable for resulting harm, and how. This difficulty is derived from the characteristics of modern artificial intelligence (“AI”) used in AV technology. Singapore, France and the UK have pioneered legal models tailored to address criminal liability for AI misbehaviour. In this article, we analyse the three models comparatively both to determine their individual merits and to draw lessons from to inform future legislative efforts. We first examine the roots of the problem by analysing the characteristics of modern AI vis-à-vis basic legal foundations underlying criminal liability. We identify several problems, such as the epistemic problem, a lack of control, the issue of generic risk, and the problem of many hands, which discommode the building blocks of criminal negligence such as awareness, foreseeability and risk taking – a condition we refer to as negligence failures. Subsequently, we analyse the three models on their ability to address these issues. We find diverging philosophies as to where to place the central weight of criminal liability, but nevertheless identify common themes such as drawing bright-lines between liability and immunity, and the introduction of novel vocabulary necessary to navigate the new legal landscape sculpted by AI. We end with specific recommendations for future legislation, such as the importance of implementing an AI training and licensing regime for users, and that transition demands must be empirically tested to allow de facto control.

Publisher

Springer Science and Business Media LLC

Subject

Law

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3