1. Alperin RC (2000) A mathematical theory of origami constructions and numbers. NY J Math 6:119–133
2. Alperin RC, Lang RJ (2009) One-, two-, and multi-fold origami axioms. In: Lang RJ (ed) Origami4: 4th international meeting of origami science, mathematics, and education. A K Peters, Natick, pp 371–393
3. Bern M, Hayes B (1996) The complexity of flat origami. In: Proceeding SODA ’96 proceedings of the seventh annual ACM-SIAM symposium on discrete algorithms. SIAM, Philadelphia, pp 175–183
4. Brill D (1984a) Asides. Justin’s origami trisection. Br Origami 107:14
5. Canovi L (1986) Origami. In: Izzo S