1. Biever, C. (2010). Twitter mood maps reveal emotional states of America. New Scientist, 207, 14. doi:
10.1016/S0262-4079(10)61833-7
2. Bollen, J., Mao, H., & Pepe, A. (2011). Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. ICWSM, 11, 450–453.
3. Duh, K., Fujino, A., & Nagata, M. (2011). Is machine translation ripe for cross-lingual sentiment classification? In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, HLT ’11, Short Papers (Vol. 2, pp. 429–433). Stroudsburg, PA, USA: Association for Computational Linguistics.
4. Google. (2016). Google translate API—Fast dynamic localization | google cloud platform [WWW Document]. Google Dev. URL:
https://cloud.google.com/translate/
. Accessed 6.20.16.
5. Hauthal, E., & Burghardt, D. (2015). Temporal occurrence and time-dependency of georeferenced emotions extracted from user-generated content. Presented at the 18th AGILE International Conference on Geographic Information Science, Lisbon.