1. Ba, A., Sinn, M., Goude, Y., & Pompey, P. (2012). Adaptive learning of smoothing functions: Application to electricity load forecasting. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 25, pp. 2519–2527). Curran Associates, Inc.
2. Bondu, A., & Boullé, M. (2011). A supervised approach for change detection in data streams. In IJCNN (International joint conference on neural networks), San Jose (pp. 519–526). IEEE.
3. Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting (with discussion). Statistical Science, 22, 477–522.
4. Candillier, L., Tellier, I., Torre, F., & Bousquet, O. (2006). Cascade evaluation of clustering algorithms. In J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), 17th European conference on machine learning (ECML’2006), Berlin (Volume LNAI 4212 of LNCS, pp. 574–581). Springer.
5. Commission for Energy Regulation. (2011). Electricity smart metering customer behavior trials findings report (Technical report). Commission for Energy Regulation, Dublin.