A Deep Forest for Transductive Transfer Learning by Using a Consensus Measure

Author:

Utkin Lev V.,Ryabinin Mikhail A.

Publisher

Springer International Publishing

Reference27 articles.

1. Arnold, A., Nallapati, R., Cohen, W.: A comparative study of methods for transductive transfer learning. In: Proceedings of the 7th IEEE International Conference on Data Mining Workshops, pp. 77–82. IEEE Computer Society, Washington (2007)

2. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. Adv. Neural Inf. Process. Syst. 19, 137–144 (2007)

3. Chen, M., Blitzer, J., Weinberger, K.: Co-training for domain adaptation. Adv. Neural Inf. Process. Syst. 24, 2456–2464 (2011)

4. Ding, Z., Shao, M., Fu, Y.: Deep low-rank coding for transfer learning. In: Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI 2015), pp. 3453–3459. AAAI Press (2015)

5. Duan, L., Tsang, I., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via auxiliary classifiers. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 289–296. ACM (2009)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forest Gap Extraction Based on Convolutional Neural Networks and Sentinel-2 Images;Forests;2023-10-28

2. Deep transductive transfer learning for automatic target recognition;Automatic Target Recognition XXXIII;2023-06-13

3. Contrastive Learning and Cycle Consistency-Based Transductive Transfer Learning for Target Annotation;IEEE Transactions on Aerospace and Electronic Systems;2023

4. Multistate health transition modeling using neural networks;Journal of Risk and Insurance;2021-10-05

5. A New Adaptive Weighted Deep Forest and Its Modifications;International Journal of Information Technology & Decision Making;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3