1. Faragher, R., Harle, R.: An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (iON gNSS+2014) (2014)
2. Liu, J., Chen, R., Pei, L., Chen, W., Tenhunen, T., Kuusniemi, H., Kroger, T., Chen, Y.: Accelerometer assisted robust wireless signal positioning based on a hidden Markov model. In: Proceedings of IEEE/ION PLANS, pp. 488–497 (2010)
3. Jung, S.-H., Lee, S., Han, D.: A crowdsourcing-based global indoor positioning and navigation system. Pervasive and Mobile Computing (2016)
4. Altintas, B., Serif, T.: Improving RSS-based indoor positioning algorithm via k-means clustering. In: European Wireless, 27–29 April 2011, Vienna, Austria (2011)
5. Altintas, B., Serif, T.: Indoor location detection with a RSS-based short term memory technique (KNN-STM). In: Tenth Annual IEEE International Conference on Pervasive Computing and Communications, PerCom, 19–23 March 2012, Lugano, Switzerland, Workshop Proceedings, pp. 794–798 (2012)