Publisher
Springer International Publishing
Reference90 articles.
1. Amari, S. I., Nagaoka, H., & Harada, D. (2007). Methods of information geometry. Oxford: American Mathematical Society.
2. Ay, N., Jost, J., Lê, H. V., & Schwachhöfer, L. (2017). Information geometry. Heidelberg: Springer.
3. Bačák, M., Hua, B. B., Jost, J., Kell, M., & Schikorra, A. (2015). A notion of nonpositive curvature for general metric spaces. Differential Geometry and its Applications, 38, 22–32.
4. Batterman, R. (2002). The Devil in the details: Asymptotic reasoning in explanation, reduction, and emergence (Oxford studies in philosophy of science). Oxford/New York: Oxford University Press.
5. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Situating Sports Science in the Movement of Digitization;Artificial Intelligence in Sports, Movement, and Health;2024
2. Manifold Learning, the Scheme of Laplacian Eigenmaps;Mathematics of Data;2023
3. Introduction;Mathematics of Data;2023
4. Methods;Wissenschaft und Philosophie – Science and Philosophy – Sciences et Philosophie;2022
5. Copyright Page;Calculated Surprises;2019-03-11