Multi-Armed Bandit Learning in IoT Networks: Learning Helps Even in Non-stationary Settings
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-76207-4_15
Reference19 articles.
1. Centenaro, M., Vangelista, L., Zanella, A., Zorzi, M.: Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 23(5), 60–67 (2016)
2. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)
3. Bubeck, S., Cesa-Bianchi, N., et al.: Regret analysis of stochastic and non-stochastic multi-armed bandit problems. Found. Trends® Mach. Learn. 5(1), 1–122 (2012)
4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multi-armed bandit problem. Mach. Learn. 47(2), 235–256 (2002)
5. Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25, 285–294 (1933)
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Agent Multi-Armed Bandit Learning for Grant-Free Access in Ultra-Dense IoT Networks;IEEE Transactions on Cognitive Communications and Networking;2024-08
2. MARBLE: Multi-Player Multi-Armed Bandit for Lightweight and Efficient Job Offloading in UAV-Based Mobile Networks;ICC 2024 - IEEE International Conference on Communications;2024-06-09
3. MAD-FELLOWS: A Multi-Armed Bandit Framework for Energy-Efficient, Low-Latency Job Offloading in Robotic Networks;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2024-05-20
4. Reinforcement learning for LoRaWANs;TinyML for Edge Intelligence in IoT and LPWAN Networks;2024
5. Massive multi-player multi-armed bandits for IoT networks: An application on LoRa networks;Ad Hoc Networks;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3