Integrating Twitter Traffic Information with Kalman Filter Models for Public Transportation Vehicle Arrival Time Prediction

Author:

Abidin Ahmad Faisal,Kolberg Mario,Hussain Amir

Publisher

Springer International Publishing

Reference17 articles.

1. Tongyu Z, Dong J, Huang J, Pang S, Du B (2012) The bus arrival time service based on dynamic traffic information. In 2012 6th international conference on application of information and communication technologies (AICT), Tbilisi. IEEE, pp 1–6

2. Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J Transp Eng 129(6):664–672

3. Lesniak A, Danek T (2009) Application of Kalman filter to noise reduction in multichannel data. Schedae Informaticae 17:18

4. Bruns A, Stieglitz S (2013) Metrics for understanding communication on Twitter. Twitter Soc 89:69–82

5. Tumasjan A, Sprenger TO, Sandner PG, Welpe IM (2010) Predicting elections with Twitter: what 140 characters reveal about political sentiment. ICWSM 10:178–185

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Unsupervised Traffic Modelling Framework in IoV Using Orchestration of Road Slicing;Revolutionizing Industrial Automation Through the Convergence of Artificial Intelligence and the Internet of Things;2022-09-23

2. Feature selection with a deep learning based high-performance computing model for traffic flow analysis of Twitter data;The Journal of Supercomputing;2022-04-13

3. The Impact of Cloud Computing on Organizational Performance;International Journal of Cloud Applications and Computing;2021-10

4. Hydrating Large-Scale Coronavirus Pandemic Tweets: A Review of Software for Transportation Research;International Conference on Transportation and Development 2021;2021-06-04

5. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter;World Wide Web;2020-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3