1. Alamri, A., Hossain, M. S., Almogren, A., Hassan, M. M., Alnafjan, K., Zakariah, M., & Alghamdi, A. (2015). QoS-adaptive service configuration framework for cloud-assisted video surveillance systems. In Multimedia Tools and Applications (pp. 1–16).
2. Chen, W. T., Chen, P. Y., Lee, W. S., & Huang, C. F. (2008). Design and implementation of a real time video surveillance system with wireless sensor networks. In Vehicular Technology Conference (pp. 218–222).
3. Chen, X., Xu, J. B., & Guo, W. Q. (2013). The research about video surveillance platform based on cloud computing. In International Conference on Machine Learning and Cybernetics (Vol. 2, pp. 979–983).
4. Chen, Y. L., Chen, T. S., Yin, L. C., Huang, T. W., Wang, S. Y., & Chieuh, T. C. (2014). City eyes: An unified computational framework for intelligent video surveillance in cloud environment. In IEEE International Conference on Internet of Things (iThings), Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom) (pp. 324–327).
5. Chen, T. S., Lin, M. F., Chieuh, T. C., Chang, C. H., & Tai, W. H. (2015). An intelligent surveillance video analysis service in cloud environment. In Security Technology (ICCST) (pp. 1–6).