Intelligent Twitter Data Analysis Based on Nonnegative Matrix Factorizations
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-62392-4_14
Reference28 articles.
1. Gupta, A., Joshi, A., Kumaraguru, P.: Identifying and characterizing user communities on Twitter during crisis events. In: Proceedings of the 2012 Workshop on Data-Driven User Behavioral Modelling and Mining from Social Media, DUBMMSM 2012, pp. 23–26. ACM, New York (2012)
2. Wong, F.M.F., Tan, C.W., Sen, S., Chiang, M.: Quantifying political leaning from tweets, retweets, and retweeters. IEEE Trans. Knowl. Data Eng. 28(8), 2158–2172 (2016)
3. Jin, L., Chen, Y., Wang, T., Hui, P., Vasilakos, A.V.: Understanding user behavior in online social networks: a survey. IEEE Commun. Mag. 51(9), 144–150 (2013)
4. Aggarwal, C.C., Zhai, C.: Mining Text Data. Springer Science & Business Media, New York (2012)
5. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semantic analysis based on ontology and deep learning for a chatbot to assist persons with personality disorders on Twitter;Behaviour & Information Technology;2023-10-27
2. A hybrid approach based on linguistic analysis and fuzzy logic to ensure the surveillance of people having paranoid personality disorder towards Covid-19 on social media;International Journal of General Systems;2023-04-03
3. Discovering Popular Topics of Sarawak Gazette (SaGa) from Twitter Using Deep Learning;Communications in Computer and Information Science;2023
4. A deep learning approach for detecting the behaviour of people having personality disorders towards COVID-19 from Twitter;International Journal of Computational Science and Engineering;2022
5. A Predictive Model for MicroRNA Expressions in Pediatric Multiple Sclerosis Detection;Modeling Decisions for Artificial Intelligence;2019
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3