Author:
Park Jinkyoo,Ferguson Max,Law Kincho H.
Publisher
Springer International Publishing
Reference47 articles.
1. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives and prospects. Science 349, 255–269 (2015)
2. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. An Open Access J. 4, 23–45 (2016)
3. Suresh, P.V.S., Venkateswara Rao, P., Deshmukh, S.G.: A genetic algorithmic approach for optimization of surface roughness prediction model. Int. J. Mach. Tools Manuf. 42, 675–680 (2002)
4. Ghosh, N., Ravi, Y.B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A.R., Chattopadhyay, A.B.: Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech. Syst. Sign. Process. 21, 466–479 (2007)
5. Ak, R., Helu, M., Rachuri, S.: Ensemble neural network model for predicting the energy consumption of a milling machine. In: 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2015), p. V004T05A056. ASME (2015)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献