1. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)
2. Assessment of Mitosis Detection Algorithms (AMIDA13), MICCAI Grand Challenge (2013). http://amida13.isi.uu.nl
3. Bloom, H.J.G., Richardson, W.W.: Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years. Br. J. Cancer. 11(3), 359–377 (1957)
4. Chang, H., Loss, L.A., Parvin, B.: Nuclear segmentation in H&E sections via multi-reference graph cut (MRGC). In: International Symposium Biomedical Imaging (2012)
5. Chen, H., Dou, Q., Wang, X., Qin, J., Heng, P.-A.: Mitosis detection in breast cancer histology images via deep cascaded networks. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1160–1166 (2016)