1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016).
http://arxiv.org/abs/1603.04467
2. Csurka, G. (ed.): Domain Adaption in Computer Vision Applications. Advances in Computer Vision and Pattern Recognition, 1 edn. Springer International Publishing (2017).
http://www.springer.com/de/book/9783319583464
3. Demner-Fushman, D., Antani, S., Simpson, M., Thoma, G.R.: Design and development of a multimodal biomedical information retrieval system. J. Comput. Sci. Eng. 6(2), 168–177 (2012)
4. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: Jebara, T., Xing, E.P. (eds.) Proceedings of the 31st International Conference on Machine Learning (ICML 2014), pp. 647–655, JMLR Workshop and Conference Proceedings (2014)
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016