Author:
Montoya-Martínez Jair,Cardoso Jean-François,Gramfort Alexandre
Publisher
Springer International Publishing
Reference18 articles.
1. Amari, S.-I.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)
2. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)
3. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Cambridge (1999)
4. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT’2010, pp. 177–186. Springer, Heidelberg (2010)
5. Cardoso, J.F.: Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4, 112–114 (1997)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Orthogonal extended infomax algorithm;Journal of Neural Engineering;2024-04-01
2. Large-Scale Independent Component Analysis By Speeding Up Lie Group Techniques;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23
3. Neural Oscillation During Mental Imagery in Sport: An Olympic Sailor Case Study;Frontiers in Human Neuroscience;2021-06-01
4. Blind source separation for the analysis sparse model;Neural Computing and Applications;2021-01-03