1. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);R Woodward,2014
2. Zeng, Y., Yang, Z.Y., Cao, W., Xia, C.M.: Hand-motion patterns recognition based on mechanomyographic signal analysis. In: 2009 International Conference on Future Biomedical Information Engineering (Fbie 2009), pp. 21–24 (2009)
3. Atzori, M., et al.: Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 1, 140053 (2014). PMC Web. 11 May 2017
4. Al-Timemy, A.H., Bugmann, G., Escudero, J., Outram, N.: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE J. Biomed. Health Inf. 17(3), 608–618 (2013)
5. Silva, J., Chau, T., Goldenberg, A.: MMG-based multisensor data fusion for prosthesis control, pp. 2909–2912 (2003)