Traffic Sign Detection and Recognition
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-57550-6_1
Reference29 articles.
1. Aghdam HH, Heravi EJ, Puig D (2015) A unified framework for coarse-to-fine recognition of traffic signs using Bayesian network and visual attributes. In: Proceedings of the 10th international conference on computer vision theory and applications, pp 87–96. doi: 10.5220/0005303500870096
2. Baró X, Escalera S, Vitrià J, Pujol O, Radeva P (2009) Traffic sign recognition using evolutionary adaboost detection and forest-ECOC classification. IEEE Trans Intell Transp Syst 10(1):113–126. doi: 10.1109/TITS.2008.2011702
3. Bishop CM (2006) Pattern recognition and machine learning. Information science and statistics. Springer, New York
4. Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 3642–3649. doi: 10.1109/CVPR.2012.6248110 , arXiv:1202.2745v1
5. Fleyeh H, Davami E (2011) Eigen-based traffic sign recognition. IET Intell Transp Syst 5(3):190. doi: 10.1049/iet-its.2010.0159
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fet-Net Algorithm for Automatic Detection of Fetal Orientation in Fetal MRI;Bioengineering;2023-01-20
2. A comparative study on COVID-19 prediction using deep learning and machine learning algorithms: A case study on performance analysis;Sakarya University Journal of Computer and Information Sciences;2022-03-29
3. White blood cell type identification using multi-layer convolutional features with an extreme-learning machine;Biomedical Signal Processing and Control;2021-08
4. Statistical machine translation outperforms neural machine translation in software engineering: why and how;Proceedings of the 1st ACM SIGSOFT International Workshop on Representation Learning for Software Engineering and Program Languages;2020-11-08
5. Automatic Segmentation of Meniscus in Multispectral MRI Using Regions with Convolutional Neural Network (R-CNN);Journal of Digital Imaging;2020-06-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3