1. Baaz, M. (1996). Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (Ed.), Gödel’96: Logical foundations of mathematics, computer science, and physics. Lecture notes in logic (Vol. 6, pp. 23–33). Brno: Springer.
2. Běhounek, L., & Cintula, P. (2006). Fuzzy logics as the logics of chains. Fuzzy Sets and Systems, 157(5), 604–610.
3. Běhounek, L., Cintula, P., & Hájek, P. (2011). Introduction to mathematical fuzzy logic. In P. Cintula, P. Hájek, & C. Noguera (Eds.), Handbook of mathematical fuzzy logic. Studies in logic, mathematical logic and foundations (Vol. 1, 37, pp. 1–101). London.
4. Blok, W. J., & Pigozzi, D. L. (1989). Algebraizable logics. Memoirs of the American mathematical society (Vol. 396). American Mathematical Society, Providence. Retrieved, from
http://orion.math.iastate.edu/dpigozzi/
5. Blok, W. J., & van Alten, C. J. (2002). The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Universalis, 48(3), 253–271.