1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: 2nd International Symposium on Information Theory, Budapest, Hungary (1973)
2. Buntine, W.: Theory refinement on Bayesian networks. In: Uncertainty in Artificial Intelligence, Los Angels, CA pp. 52–60 (1991)
3. Cussens, J., Bartlett, M.: GOBNILP 1.6.2 User/Developer Manual1, University of York (2015)
4. Chickering, D.M., Meek, C., Heckerman, D.: Large-sample learning of Bayesian networks is NP-hard. In: Uncertainty in Artificial Intelligence, Acapulco, Mexico, pp. 124–133 (2003)
5. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)