Publisher
Springer International Publishing
Reference57 articles.
1. Allen, J. B. (1980). Cochlear micromechanics—A physical model of transduction. The Journal of the Acoustical Society of America, 68(6), 1660–1670.
2. Bass, M., DeCusatis, C., Enoch J. M., Lakshminarayanan, V., Li, G., MacDonald, C., Mahajan, V. N., & Van Stryland, E. (2009). Handbook of Optics, vol. 2, 3rd ed. (p. 35.14). New York: McGraw-Hill.
3. Brownell, W. E., Bader, C. R., Bertrand, D., & de Ribaupierre, Y. (1985). Evoked mechanical responses of isolated cochlear outer hair cells. Science, 227, 194–196.
4. Chen, F., Zha D., Zheng J., Choudhury N., Jacques, S. L., Wang R. K., Shi, X., & Nuttall, A. L. (2011). A differentially amplified motion in the ear for near-threshold sound detection. Nature Neuroscience, 14, 770–774.
5. Dallos, P., Wu, X., Cheatham, M., Gao, J., Zheng, J., Anderson, C., Jia, S., Wang, X., Cheng, W., Sengupta, S., He, D., & Zuo, J. (2008). Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron, 58(3), 333–339.