1. Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn, C.J., Dinitz, J.H. (eds) Handbook of Combinatorial Designs, 2nd. edn., pp. 160–193. Chapman & Hall/CRC, Florida (2007)
2. Anderson, I., Colbourn, C.J., Dinitz, J.H., Griggs, T.S.: Design theory: antiquity to 1950. In: Colbourn, C.J., Dinitz, J.H. (eds) Handbook of Combinatorial Designs, 2nd. edn., pp. 11–22, Chapman & Hall/CRC, Florida (2007)
3. Bedford, D.: Orthomorphisms and near orthomorphisms of groups and orthogonal Latin squares: a survey. Bull. Inst. Combin. Appl. 15, 13–33 (1995)
4. Bedford, D.: Addendum to: “Orthomorphisms and near orthomorphisms of groups and orthogonal Latin squares: a survey”. Bull. Inst. Combin. Appl. 18, 86 (1996)
5. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd. edn. Cambridge University Press, Cambridge (1999)