Using Artificial Neural Networks to Identify Learning Styles
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-19773-9_57
Reference12 articles.
1. Popescu, E.: Adaptation provisioning with respect to learning styles in a Web-based educational system: an experimental study. Journal of Computer Assisted Learning 26(4), 243–257 (2010)
2. Graf, S., Chung, H.-L., Liu, T.-C., Kinshuk: Investigations about the effects and effectiveness of adaptivity for students with different learning styles. In: Proceedings of the International Conference on Advanced Learning Technologies, Latvia, pp. 415–419. IEEE, July 2009
3. Dorça, F.A., Lima, L.V., Fernandes, M.A., Lopes, C.R.: Comparing strategies for modeling students learning styles through reinforcement learning in adaptive and intelligent educational systems: An experimental analysis. Expert Systems with Applications 40(6), 2092–2101 (2013)
4. García, P., Amandi, A., Schiaffino, S., Campo, M.: Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education 49(3), 794–808 (2007)
5. Özpolat, E., Akar, G.B.: Automatic detection of learning styles for an e-learning system. Computers & Education 53(2), 355–367 (2009)
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Identifying learning styles in MOOCs environment through machine learning predictive modeling;Education and Information Technologies;2024-04-26
2. The possibilities of natural and artificial intelligence combining in educational systems;2023-12-25
3. A Student Learning Style Auto-Detection Model in a Learning Management System;Engineering, Technology & Applied Science Research;2023-06-02
4. Proactive and reactive engagement of artificial intelligence methods for education: a review;Frontiers in Artificial Intelligence;2023-05-05
5. Personalized Adaptive Learning Technologies Based on Machine Learning Techniques to Identify Learning Styles: A Systematic Literature Review;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3