Computer-Aided System for Automatic Classification of Suspicious Lesions in Breast Ultrasound Images
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-07176-3_12
Reference34 articles.
1. Yap, M.H.: A novel algorithm for initial lesion detection in ultrasound breast images. Journal of Applied Clinical Medical Physics 9(4) (2008)
2. Ikedo, Y., Fukuoka, D., Hara, J., Fujita, H., Takada, E., Endo, T., Morita, T.: Computerized mass detection in whole breast ultrasound images: Reduction of false positives using bilateral subtraction technique. In: Medical Imaging. Proc. of SPIE, vol. 6514, pp. 1–10 (2007)
3. Ikedo, Y., Fukuoka, D., Hara, T., Fujita, H., Takada, E., Endo, T., Morita, T.: Development of a fully automatic scheme for detection of masses in whole breast ultrasound images. Medical Physics 34, 4378–4388 (2007)
4. Moon, W.K., Lo, C., Chang, J., Huang, C., Chen, J., Chang, R.: Computer-aided classification of breast masses using speckle features of automated breast ultrasound images. Medical Physics. 39 (2012)
5. Gupta, S., Chauhan, R., Sexena, S.: Robust non-homomorphic approach for speckle reduction in medical ultrasound images. Medical and Biological Engineering and Computing 43, 189–195 (2005)
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cystic (including atypical) and solid breast lesion classification using the different features of quantitative ultrasound parametric images;International Journal of Computer Assisted Radiology and Surgery;2021-11-02
2. A Characterization Approach for the Review of CAD Systems Designed for Breast Tumor Classification Using B-Mode Ultrasound Images;Archives of Computational Methods in Engineering;2021-07-08
3. Deep feature extraction and classification of breast ultrasound images;Multimedia Tools and Applications;2020-07-23
4. Breast tumors recognition based on edge feature extraction using support vector machine;Biomedical Signal Processing and Control;2020-04
5. An improved machine learning technique based on downsized KPCA for Alzheimer's disease classification;International Journal of Imaging Systems and Technology;2018-12-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3