A Quality Assessment Framework for Large Datasets of Container-Trips Information

Author:

Makridis Michail,Fidalgo-Merino Raúl,Cotelo-Lema José-Antonio,Tsois Aris,Checchi Enrico

Abstract

Abstract Customs worldwide are facing the challenge of supervising huge volumes of containerized trade arriving to their country with resources allowing them to inspect only a minimal fraction of it. Risk assessment procedures can support them on the selection of the containers to inspect. The Container-Trip information (CTI) is an important element for that evaluation, but is usually not available with the needed quality. Therefore, the quality of the computed CTI records from any data sources that may use (e.g. Container Status Messages), needs to be assessed. This paper presents a quality assessment framework that combines quantitative and qualitative domain specific metrics to evaluate the quality of large datasets of CTI records and to provide a more complete feedback on which aspects need to be revised to improve the quality of the output data. The experimental results show the robustness of the framework in highlighting the weak points on the datasets and in identifying efficiently cases of potentially wrong CTI records.

Publisher

Springer International Publishing

Reference19 articles.

1. Adda, G., Mariani, J., Lecomte, J., Paroubek, P., Rajman, M.: The grace french part-of-speech tagging evaluation task. In: Proceedings of the First International Conference on Language Resources and Evaluation (LREC), pp. 433–441 (1998)

2. Camossi, E., Dimitrova, T., Tsois, A.: Detecting anomalous maritime container itineraries for anti-fraud and supply chain security. In: Proceedings of the 2012 European Intelligence and Security Informatics Conference, EISIC 2012, pp. 76–83. IEEE Computer Society, Washington (2012)

3. Camossi, E., Villa, P., Mazzola, L.: Semantic-based anomalous pattern discovery in moving object trajectories. CoRR, abs/1305.1946 (2013)

4. Chahuara, P., Mazzola, L., Makridis, M., Schifanella, C., Tsois, A., Pedone, M.: Inferring itineraries of containerized cargo through the application of conditional random fields. In: Proceedings of the 2014 IEEE Joint Intelligence and Security Informatics Conference, pp. 137–144. IEEE Computer Society, Washington (2014)

5. World Shipping Council: Container supply review. World Shipping Council (2011)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Customs Risk Analysis through the ConTraffic Visual Analytics Tool;2017 European Intelligence and Security Informatics Conference (EISIC);2017-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3