1. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft. Comput. 9, 3–12 (2005)
2. Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: Handling computationally expensive multiobjective optimization problems with evolutionary algorithms - a survey. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing no. B 4/2015, University of Jyvaskyla (2015)
3. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: K-RVEA: a Kriging-assisted evolutionary algorithm for many-objective optimization. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing no. B 2/2016, University of Jyvaskyla (2016)
4. Singh, H.K., Ray, T., Smith, W.: Surrogate assisted simulated annealing (SASA) for constrained multi-objective optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)
5. Chen, G., Han, X., Liu, G., Jiang, C., Zhao, Z.: An efficient multi-objective optimization method for black-box functions using sequential approximate technique. Appl. Soft Comput. 12, 14–27 (2012)