1. Krause, J., Gebru, T., Deng, J., Li, L.J., Fei-Fei, L.: Learning features and parts for fine-grained recognition. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 26–33. IEEE (2014)
2. Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification (2014). arXiv preprint
arXiv:1411.6447
3. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 512–519. IEEE (2014)
4. Lecture Notes in Computer Science;P Agrawal,2014
5. Yang, S., Bo, L., Wang, J., Shapiro, L.G.: Unsupervised template learning for fine-grained object recognition. In: Advances in Neural Information Processing Systems, pp. 3122–3130 (2012)