1. Almeida, L. M. W., & da Silva, K. A. P. (2015). The meaning of the problem in a mathematical modelling activity. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 45–54). Cham: Springer.
2. Blomhøj, M. (2013). The use of theory in the practice of teaching mathematical modelling: experiences from a developmental project. In I Metodologia en Matemática Educativa: Visiones y Reflexiones (Vol. 1, pp. 125–151). Mexico: Lectorum.
3. Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15–30). Dordrecht: Springer.
4. Brown, J. (2004). Enabling teachers to perceive the affordances of a technologically rich learning environment for linear functions in order to design units of work incorporating best practice. In Proceedings of the 9th Asian Technology Conference in Mathematics (pp. 242–251). Singapore: ATCM.
5. Butts, T. (1980). Posing problems properly. In S. Krulik & R. E. Reyes (Eds.), Problem solving in school mathematics (pp. 23–33). Reston: National Council of Teacher of Mathematics.