1. L.V. Ahlfors, Möbius transformations and Clifford numbers, in Differential Geometry and Complex Analysis, H. E. Rauch memorial volume, ed. by I. Chavel, H. M. Farkas (Springer, Berlin, 1985), pp. 65–73
2. L. BIanchi, Geometrische Darstellung der Gruppen linearer Substitutionen mit ganzen complexen Coefficienten nebst Anwendungen auf die Zahlentheorie,” Math. Ann.38, 313–333 (1891). Reprinted in Opere, vol. I, pt. 1 (Edizione Cremonese, Rome, 1952), pp. 233–258
3. L. BIanchi, Sui gruppi de sostituzioni lineari con coeficienti appartenenti a corpi quadratici imaginari,” Math. Ann.40, pp. 332–412 (1892). Reprinted in Opere, vol. I, pt. 1 (Edizione Cremonese, Rome, 1952), pp. 270–373
4. P. Boddington, D. Rumynin, On Curtis’ theorem about finite octonionic loops. Proc. Amer. Math. Soc. 135, 1651–1657 (2007)
5. J.H. Conway, D.A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry (AK Peters, Natick, Mass., 2003)