Multi-fault Diagnosis of Roller Bearings Using Support Vector Machines with an Improved Decision Strategy
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-22053-6_57
Reference16 articles.
1. Van, M., Kang, H.-J., Shin, K.-S.: Rolling element bearing fault diagnosis based on non-local means de-noising and empirical mode decomposition. Sci. Measur. Technol. IET 8, 571–578 (2014)
2. Jin, X., Zhao, M., Chow, T.W.S., Pecht, M.: Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Ind. Electron. 61(5), 2441–2451 (2014)
3. Saidi, L., Ben Ali, J., Fnaiech, F., Morello, B.: Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis. In: 6th International Conference on Soft Computing and Pattern Recognition, pp. 25–30. IEEE Press (2014)
4. Kang, M., Kim, J., Kim, J.-M.: Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm. Inf. Sci. 294, 423–438 (2015)
5. Ferrando, J.L., Kappatos, V., Balachandran, W., Gan, T.-H.: A novel approach for incipient defect detection in rolling bearings using acoustic emission technique. Appl. Acoust. 89, 88–100 (2015)
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A systematic review of machine learning algorithms for prognostics and health management of rolling element bearings: fundamentals, concepts and applications;Measurement Science and Technology;2020-01-01
2. Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines;Reliability Engineering & System Safety;2019-04
3. Rub-Impact Fault Diagnosis Using an Effective IMF Selection Technique in Ensemble Empirical Mode Decomposition and Hybrid Feature Models;Sensors;2018-06-26
4. Bearing Fault Diagnosis Based on Convolutional Neural Networks with Kurtogram Representation of Acoustic Emission Signals;Advances in Computer Science and Ubiquitous Computing;2017-12-20
5. Time–frequency envelope analysis-based sub-band selection and probabilistic support vector machines for multi-fault diagnosis of low-speed bearings;Journal of Ambient Intelligence and Humanized Computing;2017-10-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3