Author:
Phan Hai-Hong,Vu Ngoc-Son,Nguyen Vu-Lam,Quoy Mathias
Publisher
Springer International Publishing
Reference29 articles.
1. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. Pattern Anal. Mach. Intell. 35, 221–231 (2013)
2. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)
3. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: IEEE Conference on CVPR 2011, pp. 3361–3368. IEEE (2011)
4. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497. IEEE (2015)
5. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64, 107–123 (2005)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Human Action Recognition Based on a Spatio-Temporal Video Autoencoder;International Journal of Pattern Recognition and Artificial Intelligence;2020-03-11
2. Spatio-temporal Video Autoencoder for Human Action Recognition;Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications;2019
3. Multi-stream Convolutional Neural Networks for Action Recognition in Video Sequences Based on Adaptive Visual Rhythms;2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA);2018-12
4. Action recognition based on motion of oriented magnitude patterns and feature selection;IET Computer Vision;2018-04-09