Author:
Boháč Marek,Matějů Lukáš,Rott Michal,Šafařík Radek
Publisher
Springer International Publishing
Reference11 articles.
1. Bachan, J., Wagner, A., Klessa, K., Demenko, G.: Consistency of prosodic annotation of spontaneous speech for technology needs. In: 7th Language & Technology Conference, pp. 125–129 (2015)
2. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)
3. Huici, H., Kairuz, H.A., Martens, H., Van Nuffelen, G., De Bodt, M.: Speech rate estimation in disordered speech based on spectral landmark detection. Biomed. Signal Process. Control 27, 1–6 (2016). http://www.sciencedirect.com/science/article/pii/S1746809416000069
4. Liang, F.M.: Word Hy-phen-a-tion by Com-put-er (hyphenation, computer). Ph.D. thesis, Stanford University, Stanford, CA, USA (1983). aAI8329742
5. Mateju, L., Červa, P., Ždánský, J.: Investigation into the use of deep neural networks for LVCSR of Czech. In: ECMSM 2015, pp. 1–4 (2015)